1,552 research outputs found

    Constraint Design Rewriting

    Get PDF
    We propose an algebraic approach to the design and transformation of constraint networks, inspired by Architectural Design Rewriting. The approach can be understood as (i) an extension of ADR with constraints, and (ii) an application of ADR to the design of reconfigurable constraint networks. The main idea is to consider classes of constraint networks as algebras whose operators are used to denote constraint networks with terms. Constraint network transformations such as constraint propagations are specified with rewrite rules exploiting the network’s structure provided by terms

    Complexity of Timeline-Based Planning over Dense Temporal Domains: Exploring the Middle Ground

    Get PDF
    In this paper, we address complexity issues for timeline-based planning over dense temporal domains. The planning problem is modeled by means of a set of independent, but interacting, components, each one represented by a number of state variables, whose behavior over time (timelines) is governed by a set of temporal constraints (synchronization rules). While the temporal domain is usually assumed to be discrete, here we consider the dense case. Dense timeline-based planning has been recently shown to be undecidable in the general case; decidability (NP-completeness) can be recovered by restricting to purely existential synchronization rules (trigger-less rules). In this paper, we investigate the unexplored area of intermediate cases in between these two extremes. We first show that decidability and non-primitive recursive-hardness can be proved by admitting synchronization rules with a trigger, but forcing them to suitably check constraints only in the future with respect to the trigger (future simple rules). More "tractable" results can be obtained by additionally constraining the form of intervals in future simple rules: EXPSPACE-completeness is guaranteed by avoiding singular intervals, PSPACE-completeness by admitting only intervals of the forms [0,a] and [b,\infty[.Comment: In Proceedings GandALF 2018, arXiv:1809.0241

    Style-Based architectural reconfigurations

    Get PDF
    We introduce Architectural Design Rewriting (ADR), an approach to the design of reconfigurable software architectures whose key features are: (i) rule-based approach (over graphs); (ii) hierarchical design; (iii) algebraic presentation; and (iv) inductively-defined reconfigurations. Architectures are modelled by graphs whose edges and nodes represent components and connection ports. Architectures are designed hierarchically by a set of edge replacement rules that fix the architectural style. Depending on their reading, productions allow: (i) top-down design by refinement, (ii) bottom-up typing of actual architectures, and (iii) well-formed composition of architectures. The key idea is to encode style proofs as terms and to exploit such information at run-time for guiding reconfigurations. The main advantages of ADR are that: (i) instead of reasoning on flat architectures, ADR specifications provide a convenient hierarchical structure, by exploiting the architectural classes introduced by the style, (ii) complex reconfiguration schemes can be defined inductively, and (iii) style-preservation is guaranteed

    Architectural design rewriting as an architecture description language

    Get PDF
    Architectural Design Rewriting (ADR) is a declarative rule-based approach for the design of dynamic software architectures. The key features that make ADR a suitable and expressive framework are the algebraic presentation of graph-based structures and the use of conditional rewrite rules. These features enable the modelling of, e.g. hierarchical design, inductively defined reconfigurations and ordinary computation. Here, we promote ADR as an Architectural Description Language

    Tempestività di intervento nella colica renale: aspetti fisiopatologici

    Get PDF
    Renal colic is one of the most common diagnoses of emergency room access and ureteral stone is one of the most common causes of renal colic due to ureteral obstruction. Ureteral obstruction initially causes an increase of intraureteral pressure, which returns to baseline values   after a short time after the reduction in urine production and the progressive increase in the circumference and ureter length. Reduction in urinary flow depends on the renal hemodynamic response, which has three phases: initial vasodilation of the preglomerular afferent artery; vasoconstriction of the postglomerular efferent artery; and, finally, vasoconstriction of the preglomerular afferent artery. Renal parenchyma ischemia is associated with oxidative stress, inflammatory infiltrate and subsequent apoptosis of tubular cells and interstitial fibrosis. This degenerative pathological process tends to continue even after relatively early removal of the obstruction and despite the restoration of renal hemodynamics. Fibrosis progression is associated with alterations in renal function with hyperfiltration in the surviving nephronic population and alterations in tubular function. These pathophysiological aspects have to be considered in the management of patients with renal colic and ureteral obstruction. Expulsive treatment of renal stones should be carefully planned by accurate selection of patients and frequent follow-up controls. When the obstruction is severe or the expulsion time is prolonged, early treatment or temporary urinary diversion with deferred treatment should be considered. The time limit for awaiting spontaneous stone passage is not well defined and varies depending on the degree of obstruction and possible complicating factors, however it may be prudent to not exceed two to three weeks

    Assessing the effects of land-use changes on annual average gross erosion

    No full text
    International audienceThe effects of land-use changes on potential annual gross erosion in the uplands of the Emilia-Romagna administrative region, a broad geographical area of some 22 000 km2 in northern-central Italy, have been analysed by application of the Universal Soil Loss Equation (USLE). The presence of an extended mountain chain, particularly subject to soil erosion, makes the estimation of annual gross erosion relevant in defining regional soil-conservation strategies. The USLE, derived empirically for plots, is usually applied at the basin scale. In the present study, the method is implemented in a distributed framework for the hilly and mountainous portion of Emilia-Romagna through a discretisation of the region into elementary square cells. The annual gross erosion is evaluated by combining morphological, pedological and climatic information. The stream network and the tributary area drained by each elementary cell, which are needed for the local application of the USLE, are derived automatically from a Digital Elevation Model (DEM) of grid size 250 x 250 m. The rainfall erosivity factor is evaluated from local estimates of rainfall of six-hour storm duration and two-year return period. The soil erodibility and slope length-steepness factors are derived from digital maps of land use, pedology and geomorphology. Furthermore, historical land-use maps of the district of Bologna (a large portion ? 3720 km2 ? of the area under study), allow the effect of actual land use changes on the soil erosion process to be assessed. The analysis shows the influence of land-use changes on annual gross erosion as well as the increasing vulnerability of upland areas to soil erosion processes during recent decades

    A Model Checking Procedure for Interval Temporal Logics based on Track Representatives

    Get PDF
    Model checking is commonly recognized as one of the most effective tools for system verification. While it has been systematically investigated in the context of classical, point-based temporal logics, it is still largely unexplored in the interval logic setting. Recently, a non-elementary model checking algorithm for Halpern and Shoham\u2019s modal logic of time intervals HS, interpreted over finite Kripke structures, has been proposed, together with a proof of the EXPSPACE-hardness of the problem. In this paper, we devise an EXPSPACE model checking procedure for two meaningful HS fragments. It exploits a suitable contraction technique that allows one to replace sufficiently long tracks of a Kripke structure by equivalent shorter ones

    A look at the links between drainage density and flood statistics

    Get PDF
    Abstract. We investigate the links between the drainage density of a river basin and selected flood statistics, namely, mean, standard deviation, coefficient of variation and coefficient of skewness of annual maximum series of peak flows. The investigation is carried out through a three-stage analysis. First, a numerical simulation is performed by using a spatially distributed hydrological model in order to highlight how flood statistics change with varying drainage density. Second, a conceptual hydrological model is used in order to analytically derive the dependence of flood statistics on drainage density. Third, real world data from 44 watersheds located in northern Italy were analysed. The three-level analysis seems to suggest that a critical value of the drainage density exists for which a minimum is attained in both the coefficient of variation and the absolute value of the skewness coefficient. Such minima in the flood statistics correspond to a minimum of the flood quantile for a given exceedance probability (i.e., recurrence interval). Therefore, the results of this study may provide useful indications for flood risk assessment in ungauged basins

    Global-scale human pressure evolution imprints on sustainability of river systems

    Get PDF
    Human pressures on river systems pose a major threat to the sustainable development of human societies in the twenty-first century. Previous studies showed that a large part of global river systems was already exposed to relevant anthropogenic pressures at the beginning of this century. A relevant question that has never been explained in the literature so far is whether these pressures are increasing in time, therefore representing a potential future challenge to the sustainability of river systems. This paper proposes an index we call \u201cDifferential Human Pressure on Rivers\u201d (DHPR) to quantify the annual evolution of human pressure on river systems. DHPR identifies a per-year percentage increment (or decrement) of normalized human pressures on river systems (i.e., ratio of annual values to long-term average). This index, based on annual nightlights and stationary discharge data, is estimated for 2195 major river basins over a period of 22 years, from 1992 to 2013. The results show that normalized annual human pressure on river systems increased globally, as indicated by an average DHPR value of 1.9\u2009% per year, whereby the greatest increase occurred in the northern tropical and equatorial areas. The evaluation of DHPR over this 22-year period allows the identification of hot-spot areas, therefore offering guidance on where the development and implementation of mitigation strategies and plans are most needed (i.e., where human pressure is strongly increasing)
    corecore